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To develop students’ reasoning skills, the NCTM Principles
and Standards recommends making generalizations and
evaluating conjectures. In particular, it is emphasized that middile
school mathematics students should be engaged in activities
involving pattern recognition as a means of formulating such
conjectures,

Explorations in geometry can be especially fruitful in
providing opportunities for students to engage in discovery
aclivities thal help them develop inductive reasoning skills in
making generalizations, Classroom discourse in deciding the
truthfulness of their conjeclures helps students develop deductive
reasoning, as they strive to formulate valid arguments to convince
others of the truth of their generalizations. In many of these
geomelry discovery lessons, teachers can help students acquire
the reasoning strategy of the counterexample with timely

provision of false conjectures for which counterexamples can be

found.



For example, consider the sequence, borrowed from a
primary school lasson: 1, 3, 8, 10, 15, 21, 7?7, 77, 45, ?7?, ...

When students are asked to find what numbers go in place of
the question marks, they look for a pattern. Once the pattern is found,
a child typically explains it as "l added one mare each time than | did
before.” The hypothesis is tested and found to work,

The students have determined a rule that always worked. It
was always true. However, there are two other possible results from
tesling a conjecture that are often undervalued in the classroom:
sometimes true (meaning the conditions were not specific enough,
leading to ambiguous conclusions) and never true. More than any
other area of mathematics, the geometry curriculum abounds with
opportunities for students to investigale whether a conjecture is

always, somelimes, or never true.

THE VALUE OF 'SOMETIMES'

Friedlander and Herschkowitz (1997) found that “many
investigations that involve the processes of generalizing and
justifying patterns at the level of beginning algebra require a

siudent to follow a certain sequence of steps:



» Producing additional examples of the same kind:

e Employing the evolving pattern in some given
situation;

» Generalizing the pattern:

» Justifying conclusions."

Wa have found the same process apparent in geometry
investigations, with a notable difference. The topics discussed in
geomelry are easily visualized. The fact that students can draw
representations of a geometry conjecture makes it easier for them lo
point out reasons for their arguments. This helps them communicate
ideas orally to their classmates and the leacher — a nice stepping-
stone on the path to convincing others with written arguments.

Specifically, the third step mentioned above, ‘generalizing the
pattern,” is the step where much interesting student interaction takes
place. As students speculate as to what will happen under a specific
change in a geometric figure, they make many conjeciures about
geometric relationships that turn out not to be true. They begin to use,
and realize the value of, counterexamples as thay investigate why

something that seems as though it might be trus, is not.



Statements that are somelimes true lead to very fruitiul
classroom discussions in which students not only make and
juslily mathematical arguments, but also are encouraged to
reflect on their own reasoning. In these cases, a class will often
split into two sides, each side finding examples to support their
claim. In resolving the disagreement, students learn the strategy
of the counterexample and come to understand that just one
counterexample is sufficient to refute a universal statement.

Students also begin te distinguish between the givens and the
conclusion of a conjecture, a difficult distinction for many students
(Galbraith, 1995).

One of the objectives of classroom discourse in developing
reasoning skills is to help students avoid an incorrect expeclalion that
their hunches about what at first seems reasonable will always
generalize. In discovering the falsity of "wrong ideas," students can be
motivated to search for regularities in their data and to use inductive
reasoning to make generalizations that are true. They also start to
become appropriately cautious in making inferences and accepting

generalizations without careful examination. These are valuable



metacognilive skills that will serve students in everyday life, as well as

in the study of mathematics.

IN THE CLASSROOM

With the permission of teacher Mark Fratella and Qur Lady
Queen of Martyrs middle scheol in Birmingham, Michigan, we
carried out several investigations with some of his seventh grade
mathematics students. In these investigations, students explored
the validity of several geometric conjectures related to squares.

We didn't mention at the start that conjectures can be
‘sometimes” true — instead, we let them discover this and
describe it in their own words. The students worked together in

groups of three, taking turns in the role of recorder, to encourage

intra-group discussions.

Sample Investigation. Begin with a square. Suppose you
double the length of each side. What is the ralationship between

the perimeter of the first square and the perimeter of the second?



What do vou think will happen? Make a conjecture. Then
try several different squares, each time making a new square
using the method above. Record your results in a table. What do

you notice?

When asked what they thought would happen, students
called out that "the perimeter would get bigger,” and "it will
double.” We carried out this investigation, having the students fill
in their tables as we filled out a duplicate on an overhead
projector,

The students all agreed that the conjecture seemed to be
always true. We encouraged students to use the last line of their
lable o explore the general case of an initial square of side length
n, as a way of employing concepts from algebraic reasoning to

enhance their geometlric understanding.

Investigation 1. Begin with a square. Suppose you increase the
length of the top and bottom by one unit each and then decrease the
feft and right sides by one unit each. What will be the relationship

between the area of the square and the area of the new rectangle?



A flurry of student responses came quickly, Some students
thought the area would increase, becauss “the rectangle is taller.”
Others argued for decrease, because “it is skinnier.” Most, however,
believed lhere would be no change, because "you subtracted the same
as you added.”

In reasoning about the conditions, several students had fixed on
the lengthened side as the salient feature of the resultant rectangle,
and guessed that the area would increase. Others had fixed on the
smaller side, and guessed the area would decrease. The majority had
fixed on the amount by which the side lengths had increased or
decreased.

The proposal of several hypotheses, including the majority
hypothesis that there would be no change, stimulated discussion both
within groups and between neighboring groups, inspiring a genuine

interest in discovering whose ideas were correct.

Majority Conjecture 1: A sguare has the same area as the area of a
reclangle with short sides one unit smaller and long sides one unit

larger than the sides of the square.



Students worked together to fill out a table with their data (see
fig. 1a,) and in the ensuing discussion, it was quickly resolved among
themn that the conjeclure proposed by the class majority was, in fact,
never true. A visual model (see flg. 1b) completely satisfied the
students that the area of the rectangle would be one square unit less
than that of the original square. They found it more convincing than
the algebraic proof, in which a square of side length n is considered, as

most of them had not yet studied the multiplication of binomials,

Investigation 2: Begin with a square. Suppose you double the fength
of each side. What is the relationship between the area of the first

square and the area of the second?

The class again called out their first impulses, which were
divided between two conjectures. Most students thought that the area
would also be doubled, while a few thought that it would be
quadrupled. We let the students investigate (see fig. 2a), this time

designating a new recorder for each group.



Majority Conjecture 2: if the sides of a square are doubled, then the

area of the square is doubled.

It wasn't long before the students, by examining several cases
and filling out a table (see fig. 2a), found that the majority conjecture
wasn't true for any of the squares they studied. Many students were
genuinely surprised by the pattern they observed in the table, but
despite their surprise, they all agreed by the end that the area would
always quadruple.

The students agreed that the either the visual model or its
corresponding algebraic proof (see fig. 2b) would be sulficient to
convince others that the new square would have four limes the area
ol the original.

Classroom discourse of this kind can help students begin to
recognize a complete, valid mathematical argument. By having to
explain their thinking to others, students also learn how to formulate
their arguments with sufficient clarity to convines others,

Evaluating never true stalements should be an integral part of a

child's mathematical experience. We balieve, however, that it is the



third type of statement, "sometimes true," that is the most important

for developing reascning skills.

Investigation 3: Bagin with a quadrilateral. Find the midpoints of
two opposite sides. Draw the mid-line, a line connecting the opposite
midpoints. What is the relationship of the mid-line to the other two

sides?

On the overhead projector, we demonstraled the construction
of a mid-line using a square, The students noticed (among other
things) that it was “parallel with the sides it doesn't touch." Thay
began drawing quadrilaterals to investigate their final conjecture of

the day (see fig. 3a).

Conjecture 3: A line joining the midpoints of two opposite sides of a

quadrilateral is parallel to the other two sidas,

This is an intelligent conclusion based on the square, or on the
other figures shown in fig 3b. However, those figures have an extra

condition placed upeon them — they are all quadrilaterals with at least



one pair of parallel sides. Although the conjecture is true for some
quadrilaterals, it cannot be generalized to all quadrilaterals, as shown
by the counterexample in fig. 3c.

By not thinking from the cnset lo draw quadrilaterals other
than the standard square, rectangle, and parallelogram, some
students made a false generalization. But after only a few minutes of
drawing their own quadrilaterals, nearly the entire class was
clamoring that the conjeclure was not always true. "Sometimes it's
true,” they said, or “it depends.” Another pointed out that “it's not true
i you draw an odd shape."

“But somelimes it is true,” another pointed out, drawing
general agreement.,

We stepped in at this point, and suggested that the class try to
sort the quadrilaterals into two sets: ones for which the conjecture
was true, and ones for which it was not. There was considerable
debate among the students, for a while, regarding trapezoids, since
one must consider both midlines in order to notice that the conjecture
can fail {(see fig. 3d).

After some discussion, there was general agreement that the

statement is true for sguares, rectangles, and parallelograms, and



sometimes trapezoids, but seemed to be false for all other
quadrilalerals.

Sludents had difficully attempting to describe what properties
of some quadrilaterals made the statemeant true when for all other
quadrilaterals the statement was false,

"The odd shapes aren't usually parallel.”

"Not all the guadrilaterals have even sides."

"Some of the shapes have slanted sides."

"It depends upon if the sides are equal in length and if their

distances away are equal.”

"The shapes have to be lines that are parallel.”

"The sides have to be equal."

" The hypothesis is usually what happens unless the shape

doesn't have the same shape of the opposite side."

Gradually, the students began to remember that squares and
rectangles are also parallelograms. They decided that having
opposite sides parallel is the condition that makes the statement true.
They also noticed that the bases of trapezoids are parallel, but the

legs are not. For this reason, they concluded that the statement is



true for only one mid-line of a trapezoid ~the line connecting the

midpoints of the two legs.

FURTHER EXPLORATIONS

As mathematicians will be quick to point out, counterexamples
are often difficult to find. They often appear only after a long and
arduous search. Asking children to validate mostly always true and
naver true conjectures can result in a false sense of having examined
all the cases. The sometimes-true statements are needed to help
children dig deeper, gather evidence, test conjectures, and look for
irregularities. When children are engaged in thinking and reasoning
about all three types of conjectures, teachers can help children
become apprapriately cautious in making inferences and in
examining all the conditions.

We conclude by providing a list of more classroom

investigations of propositions, most of which are sometimes

true.
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More Classroom Investigations

Answer: S = Somelimes Trus, A = Always True, N = Never True
_A an obtuse triangle has 2 acute angles

_S_arectangle has perpendicular diagonals
_S_aparallelogram has congruent diagonals

_S_arhembus has 2 acute angles

_A_asquare has perpendicular diagonals

__S_an isosceles triangle is equilateral

N_the bisector of an obluse angle divides the angle into twa
smaller obtuse angles

S _an octagon has B congruent sides
S_a parallelogram has perpendicular diagonals
S _adiagonal of a hexagon is a line of symmetry

S _Ihe diagonals of a rectangle intersect to form 4 congruent
triangles

A _the diagonals of a rhombus intersect to form 4 congruent
tfriangles

N _if the radius of a circle is doubled, then the area of the circle
is doubled

S _arhombus has congruent diagonals

S_a median of a triangle forms 2 congruent triangles

S_the altitude of a triangle forms congruent triangles

A_the mid-line of 2 parallelogram is parallel to one side of the
parallelogram

N _vertical angles have a common vertex and a common side



A__lwo consecutive angles of a parallelogram are
supplementary

S_a bisector of a line segment is perpendicular to the segment
S_if all the angles of one figure are congruent to the

corresponding angles of a second figure, then the figures are
similar

_N_the diagonal of a pentagon is a line of symmetry
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Conjecture 1: A square has an area that is one
square unit more than the area of a rectangle with
short gides one unit smaller and long sides one
unit larger than the sides of the square.

Area Proof:

a

Rearrange the regions:

a
fot o)
=
] / | The resultant rectangla
+ / has an area one square unil
Z lzss than the original squara,
1

Algebraic Proof:
{a+1}{a—1}=a§a—1}+ 1{fa—-1)
=a“ " —a+a-1
=g =1

Figure 1b
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Visual Model: What happens to the area of a
square when each sids is doubled in length?

3‘5’

a

2

el

Area = axa

a

i3
a |
|

i + a

Area = {EaJ(Ea}
=4a
= d{area of original square)

Flgure 2b
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The Mid-Line of a Quadrilateral

= =

Figure 3b



A Counterexample

The mid-line is not parallel to the
remaining two sides

Figure 3c




The mid-line is parallel to the remaining two sides.,

Figure 3d

False




