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Abstract. For the purpose of large scale computing, we are inter-
ested in linking computers into large interconnection networks. In
order for these networks to be useful, the underlying graph must
possess desirable properties such as a large number of vertices, high
connectivity and small diameter. In this paper, we are interested in
the Nova graph as an interconnection network, and the k-Disjoint
Path Problem. In 2007, Boats, Kikas and Oleksik showed that the
Nova graph A

+

4
has the 3-Disjoint Path Property. In this paper,

we extend the result to the general Nova graph A
+
n , and show that

this class of interconnection networks has the (n − 1)-Disjoint Path
Property for n ≥ 4. We discuss the significance of this result in com-
parison to other interconnection networks and close with remarks on
possible future research directions.
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1. Introduction

The study of large interconnection networks has attracted a great deal of
research over the last few years. In order for these networks to be useful, the
underlying graph structure should have properties such as vertex symmetry,
high connectivity, low diameter, and a large number of vertices (see [1,2]).

In this paper we study the following problem: Given k pairs of distinct
nodes (s1, t1), (s2, t2), . . . , (sk, tk) in a graph, can these pairs be connected
with k disjoint paths? This problem is called the k-Disjoint Path Prob-

lem,and has generated much research. If for a graph G we can do this
for any selection of k pairs of distinct nodes, then G is said to have the
k-Disjoint Path Property.

Much has been studied about this problem. It has been shown for k ≥ 3
the problem of finding k disjoint paths is NP -hard. Watkins in [9] showed
that if a graph G has the k-Disjoint Path Property, then it must be (2k−1)-
connected. Past work done by Cheng and Lipman shows that the split star
graph, S2

n, has the (n − 1)-Disjoint Path Property [3]. In 2005, Cheng,
Kikas, and Kruk showed that the alternating group graph AGn has the
(n− 2)-Disjoint Path Property [4, 8].

Both of the above proofs, for the split star and the alternating group,
were existence proofs, not providing an algorithm for the construction
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Figure 1. The Nova Graph A+
4

of these paths. In 2006, Boats, Kikas, and Oleksik developed an alge-
braic/geometric algorithm that took advantage of the hierarchal structure
of AG5 to demonstrate the construction of the 3-disjoint paths [5].

In 2007, Boats, Kikas and Oleksik developed a generalized algebraic
approach for finding disjoint paths in the alternating group graph AGn [7].
In a separate paper in 2007, Boats, Kikas and Oleksik introduced the Nova
graph as a new interconnection network, and showed that the Nova graph
A+

4 has the 3-Disjoint Path Property [6]. In this paper, we generalize our
result to A+

n and show that this class of interconnection networks has the
(n− 1)-Disjoint Path Property for n ≥ 4.

2. Composition and Connectivity of the Nova Graph

The Nova graph is formed from the alternating group graph, AGn, n ≥ 4,
whose vertices are the even permutations of the first n natural numbers.
Two vertices are connected by an edge if and only if one of the vertices’
corresponding permutations can be obtained from the other by means of
a permutation of the form (12j), with j ∈ {3, 4, . . . , n}. This makes AGn

a Cayley graph, with these n − 2 edge permutations as generators. The
degree of each vertex is 2n − 4, since there will be an adjacent vertex for
each of the n−2 generators, and also each of the generators inverses, (1j2).

The Nova Graph, A+
n , is formed from AGn by adding edges defined by

the permutation J = (12)(34). It was shown in [6] that this decreased the
diameter of A+

4 to two, enabling it to have the 3-disjoint path property.
The Nova Graph is also a Cayley graph, with n− 1 generators. The degree
of each vertex is 2n − 3; that includes the 2n − 4 adjacent vertices from
before, and one more adjacent vertex connected by a “J” edge. Figure 1
illustrates A+

4 .
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Like AGn, A+
n has a hierarchical structure, consisting of n “substars,”

denoted H1, H2, . . . , Hn, each with identical structure to A+
n−1. The index

j in Hj indicates the last digit in the even permutation associated with the
vertex. For this reason, every vertex in the graph is adjacent to 2n − 5
vertices within the same substar, and one more vertex in each of 2 other
substars. Those two vertices are adjacent through (12n) and (1n2) edges,
and they are also adjacent to each other, thus forming a 3-cycle. These
(12n) and (1n2) edges are called “conduits.”

There will be times when we wish to begin a path from si to ti by
immediately leaving si’s substar via a conduit edge; we will refer to this
as “quickgating.” The vertex v1 can “quickgate” to vertices v2 ∈ Hy and
v3 ∈ Hz, where y and z are the first two integers in the even permutation
corresponding to v1. The only 3-cycles which involve more than one substar
necessarily involve three different substars, such as the {v1, v2, v3} example
above, so it follows that two vertices in the same substar cannot be adjacent
to the same vertex in another substar. This is useful to know, as it means
whenever we choose to quickgate multiple vertices from the same substar,
all of them will necessarily go to different places.

Between any 2 substars of A+
n are found K = (n − 2)! conduits. This

is an important observation, since we will want to use conduits whenever
routing a path for any (si, ti) pair not contained within a single substar.
If neither si ∈ Hy nor ti ∈ Hz lies on a conduit connecting their substars,
we may attempt to route si to a vertex σi ∈ Hy, and ti to τi ∈ Hz, where
σi and τi occupy opposite ends of a conduit. This is called “surrogate

routing,” and σi and τi are the “surrogates” of si and ti respectively.

3. Preliminary Considerations

Suppose Mij is the number of mated pairs which must be routed between
Hi and Hj . Before routing them, we must consider not only the value of
K, but also Bij , the number of conduit vertices occupied by elements of
S∪T not to be so routed. The Bij vertices are “blocks,”– they render their
conduits useless since the Mij paths cannot be routed through them.

We must also consider how the vertices of S ∪ T are distributed among
the substars. The following definition effectively categorizes the possible
arrangements.

Definition For the vertices S ∪ T ⊂ A+
n , their phi-count is the ordered

n-tuple (φ1, φ2, . . . , φn), where φα = |(S ∪ T ) ∩Hα|. We denote by φmax

the largest number in a phi-count:

φmax = max
α

|(S ∪ T ) ∩Hα|.

There are two lemmas which we will need during the proof of the main
result. The first establishes a condition on φmax which will guarantee the
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existence of sufficient disjoint paths, while the second will help prove a
difficult special case.

Lemma 1 In A+
n+1, with n ≥ 4, if φmax ≤ n − 1, then the vertices of

S ∪ T can be connected with n disjoint paths.

Proof: Let K be the number of conduits between substars in A+
n+1; for

n ≥ 4, we have K = (n− 1)! ≥ 2(n− 1).
Let Mij be the number of mated pairs to be routed between substars Hi

and Hj , and Bij be the number of blocked conduits between those substars.
Every vertex of S∪T could potentially block a conduit, but for every mated
pair to be routed between the substars, at least one conduit (if not two)
are still usable. Thus: Bij ≤ φi + φj −Mij .

For routing the Mij pairs via conduits to be impossible, it would take:

Mi,j > K −Bi,j

≥ K − (φi + φj −Mi,j)
= Mi,j +K − φi − φj

⇒ φi + φj > K ≥ 2(n− 1)

Thus, φmax ≤ n−1 is sufficient to guarantee there will be enough unblocked
conduits for routing.

Once suitable open conduits are found for all inter-substar S ∪ T pairs,
we can always use these conduits for surrogate routing. Each substar of
A+

n+1 has the (n−1)-disjoint path property, and since φmax ≤ n−1, it will
always be possible to route vertices of S ∪ T to surrogates. �

This lemma lends itself to a general strategy for proving A+
n+1 has the

n-disjoint path property. If the vertices of S ∪ T are distributed such that
φmax ≤ n − 1, or if we can route some or all of the S ∪ T vertices to new
positions in such a way that the new φ∗max ≤ n− 1, then the result follows.
Indeed, explaining how this can be done for various values of φmax will
constitute the bulk of the induction step of the proof.

Lemma 2: For n ≥ 4, if An+1 has substars Hy and Hz such that S ⊂ Hy

and T ⊂ Hz, then it is always possible to find two mated (si, ti) pairs for

which both vertices can quickgate without being blocked.

Proof: Since each vertex of S∪T can quickgate to a vertex in two different
substars, one of the two substars must be empty. It follows that any given
mated pair, si and ti, can each quickgate without being blocked. This is
because si has at least one open vertex to which it may quickgate, and the
only way t1 could have both its quickgates occupied is if s1 was routed to
one of them, but t1 cannot be blocked by its mate.
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Quickgate s1 and t1; we name their destinations w1 and w2 respectively.
It is impossible for s1 to block a quickgate destination for another vertex
in S, because two vertices in the same substar can’t quickgate to the same
destination. The vertex s1 could block one of the ti’s, but no more than
one, since w1 is adjacent to only two vertices from other substars, and s1
is already one of them. Similarly, t1 is also capable of blocking only one of
the si’s.

Thus the mated pair (s1, t1) is capable of blocking at most two other
mated pairs. Since n ≥ 4, there are at least three other mated pairs, and
therefore a second pair will always be able to quickgate. �

4. Proof of the Proposition

Proposition For n ≥ 4, A+
n has the (n− 1)-disjoint path property.

This will be a proof by induction, using n = 3 (i.e. A+
4 ) as the base case.

It has already been proven by Boats, Kikas, and Oleksik in [6] that A+
4 has

the 3-disjoint path property, so only the induction step remains; its proof
will take up the remainder of this section.

For the induction step, we assume n ≥ 4 and that An has the (n − 1)-
disjoint path property. It follows that the substars Hi, i ∈ {1, 2, . . . , n+1},
which comprise A+

n+1 each have the (n − 1)-disjoint path property. The

object will be to show that A+
n+1 has the n-disjoint path property.

Let the S ∪ T configuration be given, and consider the value of φmax.

The φmax ≤ n− 1 cases: By Lemma 1, n disjoint paths can be found.

The φmax = 2n case: We can quickgate every S ∪ T vertex to one of two
neighbors with no fear of blocking, and if the new φ∗max ≤ n− 1, then the
n disjoint paths can be completed by Lemma 1.

Suppose φ∗max ≤ n − 1 isn’t possible. Since any two S ∪ T vertices can
be quickgated to different substars, it can only be that all or all but one
of the S ∪ T vertices quickgate to the same two substars. In either case,
the quickgate destinations can be selected so that n− 1 mated (si, ti) pairs
are sent to some substar H∗, and the other two S ∪ T vertices are sent
anywhere else. Since H∗ has the (n− 1)-disjoint path property, those n− 1
disjoint paths can be completed; it is then a trivial matter to complete the
last path through surrogate routing.

The φmax = 2n− 1 case: Without loss of generality, say s1 ∈ H2, which
means {(S ∪ T ) \ s1} ⊂ H1. We then quickgate some S ∪ T vertex in H1

to a substar other than H2, say H3; if s1 blocks a quickgate destination
for some vertex in H1 other than t1, we necessarily choose this vertex to
quickgate to H3.

If φmax ≤ n − 1 is possible we can apply Lemma 1, so assume not. It
follows that all or all but one of the remaining S∪T vertices in H2 quickgate
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to the same two substars, and that at least one of those substars must be
H1 or H3. As in the previous case, we can choose quickgate destinations
so that n− 1 mated pairs end up in the same substar (H1 or H3), with the
other two vertices ending up elsewhere, and the result follows by the same
argument as in the previous case.

The n ≤ φmax ≤ 2n− 2 cases: We categorize these cases as φmax = 2n−x,
where x is the number of vertices not in H1. We will wish to connect some
mated pairs within H1, and route unmated S ∪ T vertices to conduits in
order to send them to their mates’ substars.

Since H1 has the (n−1)-disjoint path property, we can route all we want
provided we use no more than 2(n− 1) total surrogate and S ∪ T vertices;
hence the number of unmated vertices we can route to any conduits we
wish is:

2n− 2 − φmax = 2n− 2 − (2n− x)
= x− 2

Define ψ to be the number of mated pairs in H1; clearly ψ ≥ n − x.
Since H1 has the (n − 1)-disjoint path property, we can easily connect all
ψ mated pairs with disjoint paths. After routing these mates together, the
number of unmated vertices left is φmax − 2ψ.

Consider the subcase where not every S ∪ T pair has a representative in
H1; i.e. there exists a mated (s1, t1) pair with neither s1 nor t1 in H1. It
follows that ψ ≥ n− x+ 1. This means the number of unmated vertices in
H1 is:

φmax − 2ψ = 2n− x− 2ψ
≤ 2n− x− 2(n− x+ 1)
= x− 2 .

Thus every S ∪ T vertex can either be routed to its mate in H1, or routed
to an open conduit from H1 to the substar hosting its mate; the n disjoint
paths are then easily completed.

All remaining subcases involve S∪T configurations for which every mated
pair has a representative in H1, and since switching the si and ti designa-
tions doesn’t change the problem, we can categorize these subcases, without
loss of generality, as S ⊂ H1. The number of unmated vertices in H1 is:

φmax − 2ψ = 2n− x− 2ψ
= 2n− x− 2(n− x)
= x ,

which means we can connect mated pairs in H1 and direct all but two of
the unmated S ∪ T vertices to appropriate conduits.

Therefore, the existence of n disjoint paths will be proven if we can
demonstrate that it is always possible to quickgate two unmated S ∪ T

vertices, avoiding blocks, and that doing so will create a new configuration
6



in {A+
n+1 \ H1} for which φ∗max ≤ n − 1. This will be possible for most

eligible values of x, and we will deal with the exception as a special case.
There are x unmated si’s eligible for quickgating, with the x unmated

ti’s as potential blocks. Two si’s cannot quickgate to the same vertex,
which implies that they cannot block each other, and also that it takes two
ti blocks to prevent an si from quickgating. Thus Q, the number of si’s
which can quickgate without blockage, is:

Q ≥ x− ⌊
x

2
⌋ .

The x = 2 subcase: There are only two unmated si’s in H1, without loss of
generality say s1 and s2. The vertex s1 cannot be blocked from quickgating,
as this would require two blocks, and the only potential block is t2 since
t1 is s1’s mate and thus its destination, not a block. Similarly, t2 cannot
be blocked. If s1 is sent to a different substar than t1, and s2 is sent to a
different substar than t2, then φ∗max = 2 ≤ n− 1 for {A∗

n+1 \H1}, and the
result follows from Lemma 1.

The 3 ≤ x ≤ n− 1 subcases: x ≥ 3 implies that Q = x − ⌊x
2 ⌋ ≥ 2, so it is

possible to quickgate two or more unmated vertices from S ∪ T .
Since x ≤ n − 1, we are guaranteed that the φ-value is no more than

n− 1 for any substar other than H1. Suppose φ∗max ≤ n− 1 isn’t possible
after two quickgates. This implies one or more blocks outside of H1 which
force the quickgating si’s to a substar H∗ so that its φ-count becomes n or
more. This would require the number of blocks plus the number of ti’s in
H∗ to be at least n, which contradicts x ≤ n− 1.

Hence {A∗

n+1 \H1} has φ∗max ≤ n− 1; the result follows from Lemma 1.

The x = n subcase: This implies S ⊂ H1 and T ⊂ {A+
n+1 \H1}.

If the φ-count is no more than n−1 for any substar other than H1, then
φ∗max ≤ n− 1 is possible after two quickgates, by the same argument as in
the previous subcase.

This leaves only the special subcase where T is contained entirely within
one substar; without loss of generality say S ⊂ H1 and T ⊂ H2. By Lemma
2, we can quickgate two mated pairs, say (s1, t1) and (s2, t2), without block-
age. We can then use surrogate routing to send every other vertex in S ∪T
to any of the other n− 1 substars we choose.

If {s1, s2, t1, t2} all quickgate to the same substar, say H3, then we can
use surrogate routing to send every other vertex in S to H4, and every other
vertex in T to H5 (for n ≥ 4, there are at least 5 substars). The (s1, t1) and
(s2, t2) paths can be easily completed within H3, and the remaining paths
can be completed by Lemma 1, since the new configuration in H4 ∪H5 has
φ∗max = n− 2 ≤ n− 1.

If no more than 3 of {s1, s2, t1, t2} go to the same substar, then we choose
surrogate routes for the rest of S∪T which spread the vertices out as much
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as possible over the substars of {A+
n+1 \ (H1∪H2)}. Spreading 2n vertices

over these n− 1 substars guarantees that the resulting new φ-count has:

φ∗max = min

{

3, ⌈
2n

n− 1
⌉

}

,

which for n ≥ 4 is guaranteed to be no more than 3. Thus φ∗max ≤ n − 1,
and the n disjoint paths can then be completed by Lemma 1.

As we have covered all possible φ-counts, the proposition is proven. �

5. Performance Advantages of the Nova Graph

With the proposition proven, it is pertinent to consider the practical-
ity of the result. Akers [2] first postulated numerous advantages to the
use of symmetry groups for graph structures in interconnection networks.
The alternating group graph AGn, the split-star graph S2

n, and now the
Nova graph A+

n are the most recently-studied graphs of this type. Consider
the following table, summarizing the disjoint path performance and several
characteristics of these graphs.

Graph AGn S2
n A+

n

Disjoint Paths n− 2 n− 1 n− 1

Vertices n!
2 n! n!

2

Edges (n− 2)n! (2n−3
2 )n! (2n−3

4 )n!

Diameter ⌊ 3(n−2)
2 ⌋ ⌊ 3(n−2)

2 ⌋ + 1
2 , n = 4

⌊ 3(n−2)
2 ⌋ , n ≥ 5

Vertex symmetry yes yes yes
Edge Symmetry yes yes no

The “J” edges used in constructing the A+
n from AGn prevent the Nova

graph from being edge-symmetric, but this is a small sacrifice which yields
big dividends. In guaranteeing as many disjoint paths as the split-star, the
Nova graph uses half as many vertices and half as many edges. It does so
with as small a diameter as the alternating group graph, and in the case of
A+

4 the diameter is even smaller.

6. Conclusion

In this paper we have proven that the Nova graph, A+
n , has the (n− 1)-

disjoint path property. Our proof is purely an existence proof, that is, we
have not provided an algorithm which generates the paths. However, we
believe that the generalized algebraic algorithm for finding disjoint paths
in AGn [7] can be adopted to find the disjoint paths in any Cayley graph,
including A+

n . This, combined with the performance advantages of the Nova
graph, suggest it is desirable for use as an interconnection network.
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