
AN ALGEBRAIC APPROACH FOR FINDING DISJOINT
PATHS IN THE ALTERNATING GROUP GRAPH

JEFFE BOATS, LAZAROS KIKAS, JOHN OLEKSIK

Abstract. For the purpose of large scale computing,we are inter-
ested in linking computers into large interconnection networks. In
order for these networks to be useful,the underlying graph must pos-
sess desirable properties such as a large number of vertices, high
connectivity and small diameter. In this paper, we are interested in
the alternating group graph, as an interconnection network, and the
k-Disjoint Path Problem. In 2005, Cheng, Kikas and Kruk showed
that the alternating group graph, AGn has the (n− 2)-Disjoint Path
Property. However, their proof was an existence proof only. They
did not show how to actually construct the (n − 2) disjoint paths.
In 2006, Boats, Kikas and Oleksik developed an algorithm for con-
structing the three disjoint paths in the graph AG5. Their algorithm
exploited the hierarchal structure of AGn to construct the paths. In
this paper we develop a purely algebraic algorithm that constructs
the (n− 2) disjoint paths from scratch. This algebraic approach can
be used for other Cayley graphs such as the split-star and the star
graphs. Indeed, we believe that our approach can be used for any
Cayley graph. We close with remarks on possible research directions
stemming from this work.

Keywords: Interconnection networks, graphs, vertex disjoint paths

1. Introduction

For the purposes of large scale computing,we are interested in connecting
together a large number of processors/computers. In order for these net-
works to be useful,the underlying graph structure should have properties
such as vertex symmetry, high connectivity, low diameter and have a large
number of vertices. Please see [1, 2].

Recall that connectivity refers to the number of vertices one can delete
from a graph without disconnecting it. Deletion of a vertex can be consid-
ered as processor failure in a computer network. We want our network to
be able to handle a large number of processor failure and still have a func-
tioning network. That is, we want our graph to remain connected. Thus,
we want our graph to have high connectivity.

Since these networks will be used for very large computations involving
large data sets, it is desirable for our graph structure to have a large number

1



1342 2143

3412 4213

2431 4321

1234 3124

2314

3241

4132 1423

Figure 1. AG4

of vertices. We also want, relative to the number of vertices, for the graph to
have low diameter. This reduces communication delay within the network.

The study of interconnection networks and their underlying graph topolo-
gies has been the subject of much research. For a very long time the n-cube
was the network topology of choice. In 1988, the star graph was introduced
as a competitive alternative to the n-cube [1, 2]. In the 1990’s the split
star and its companion graph was introduced as interconnection network
topologies [3, 6].

In this paper we study the alternating group graph AGn. Let An be
the alternating group: the group of even permutations on the symbols
1, 2, 3, ..., n. The vertex set of AGn is the set An. Two vertices of AGn

are adjacent if and only if one can get from one vertex to the other via a
3-rotation. A 3-rotation is accomplished by rotating elements in the first,
second, and kth position where k ∈ {3, 4, 5, ..., n}. There are two types
of 3-rotations: a left rotation and right rotation. As an example consider
the permutation (12345) ∈ AG5. Then both the permutations (51342) and

2



(25431) are adjacent to (12345). Figure 1 displays the alternating group
graph AG4.

A summary of some of the basic properties of AGn can be found in [6].
A few worth noting are that the alternating group graph AGn is a regular
graph with degree 2(n − 2) and it has n!(n−2)

2 edges. It is also vertex
symmetric and has a hierarchal structure. Consider the subgraph of AGn

induced by the vertices where 1 is fixed in the nth position. It is clear
our subgraph will be isomorphic to AGn−1. Since, we can do this for all
n symbols it is clear that AGn is made up of n copies of AGn−1. These
properties make the alternating group graph AGn a novel topology in the
design of parallel networks.

Interconnection networks of interest such as the split-star, the star graph
and the alternating group graph, belong to a class of graphs called Cayley
graphs. Suppose that G is a finite group with “multiplication” as its binary
operation. A Cayley graph has as its vertex set the group elements of G
or subgroup of G. Two vertices a, b ∈ G are adjacent if and only if there
exists a generator g ∈ G such that b = ga. The split-star and the star graph
has as its vertex set the symmetric group Sn. Cayley graphs are not just
interesting in their own right -they serve well as interconnection networks.

Suppose that we have four computers in an interconnection network and
denote them by A,B, C and D. Suppose we want computer A to com-
municate with B and C with D simultaneously. Communication between
two processors is accomplished by sending the message across a path in
the network. Suppose the path of communication between A and B share
a computer with the path between C and D,then during the simultaneous
communication a resource has to be shared. This sharing is called a signal
collision and can cause communication delay.

If many signal collisions occur,the performance of the network is affected.
Hence, signal collision is a major factor in the performance of parallel net-
works. The question is: Given an interconnection network, how many
simultaneous signals can be routed through a particular network topology
while avoiding signal collisions?

In graph theoretic terms we want to study the following problem: Given
k pairs of distinct nodes (s1, t1), (s2, t2), ..., (sk, tk) do there exist k-disjoint
paths, one connection each pair? This problem is called the k-Disjoint
Path Problem,and has generated much research. If for a graph G we can
do this for any selection of k pairs of distinct nodes,then G is said to have
the k-Disjoint Path Property.

Much has been studied about this problem. It has been shown for k ≥ 3
the problem of finding k-disjoint paths is NP -hard. Watkins in [8] showed
that if a graph G has the k-Disjoint Path Property then it must be (2k−1)-
connected. Past work done by Cheng and Lipman shows that the split star
graph, S2

n has the (n−1)-Disjoint Path Property [3]. In 2005, Cheng, Kikas,

3



and Kruk showed that the alternating group graph AGn has the (n − 2)-
Disjoint Path Property [4, 7]. Both these proofs for the split star and the
alternating group are existence proofs; they do not provide an algorithm
for the construction of these paths.

In 2006, Boats, Kikas and Oleksik developed an algebraic/geometric al-
gorithm that took advantage of the hierarchal structure of AG5 to demon-
strate the construction of the 3-disjoint paths [5]. In this paper, we provide
a purely algebraic algorithm for finding the (n− 2)-disjoint paths in AGn.
We believe that our approach can be used for any type of Cayley graph
where the finite group is some permutation group. We also believe that
we can extend our approach for other type of Cayley groups other than
permutation groups. These claims remain to be proved.

2. Some Main Ideas for our Approach

There are advantages to routing within a Cayley graph as opposed to
other graphs. Principally, path routing is a matter of algebraic factoriza-
tion. From each vertex, the possible movements to neighboring vertices are
determined by the group generators and their inverses. That is, for each
generator or inverse, there exists an edge from said vertex.

Distance is measured in terms of the number of factors. For example,
if we want to route a path from v1 to v2, we can examine the algebraic
relationship between these two vertices. Suppose our set of generators for
our Cayley graph is {g1, g2, g3, ..., gn}. If v1 = g1g2g3v2 then the path
from v1 to v2 uses three edges. However, if another factorization gives
v1 = g4g5v2 then we have found a shorter path. The distance between
two vertices is defined as the least number of generators(or their inverses)
necessary to create a path.

Our algorithm begins at s1 and considers the generators and inverses of
generators as possible movements. It measures each possible movement in
terms of criteria for optimality, and then selects the direction deemed best.
Meanwhile, the other movements’ evaluations are kept for later use should
there be a need for “backtracking”.

Backtracking occurs when past options, once overlooked, turn out to
have better characteristics than the options available later down the path
currently believed best. It also occurs if later paths, say the (s3, t3) path,
is unroutable due to blockages from previous paths.

A key question is: How does one approach optimality? What makes one
movement from a given vertex better than another, and what makes one
completed path better than another? A future consideration is whether an
approach can be formulated which is applicable to all Cayley graphs. For
now, we have an approach which works(with very minor adjustments) for
any Cayley graph whose vertex set is a permutation group or subgroup of
such.

4



In this paper, we address our approach in terms of the alternating group
graph AG5. Let Hi be the substar of AG5 induced by the elements of A5

with i fixed in the 5th place. If we consider the elements of A5 then the
elements of H5 forms a subgroup of A5 with cosets formed by H1,H2, H3

and H4. Clearly, each Hi is isomorphic to AG4 for i = 1, 2, 3, 4, 5. It is
an elementary exercise in algebra to show that the group An is generated
by the three cycles (12k) and (1k2) for k ∈ {3, 4, 5, .., n}. A path in AGn

from vertex α to vertex β is accomplished by performing a sequence of 3-
rotations. In algebraic terms, a path from α to β can be found if one can
express β = g1g2...gsα where each gi for i = 1, 2, ..., s is either a (12k) or a
(1k2) for k = 3, 4, 5, ..., n.

As an example suppose that α = 1234 and β = 2143. Consider the
path α, 2431, 3241, β. This is equivalent to the following factorization of β.
That is, β = α(124)(132)(124). Thus finding a path in AGn is equivalent to
factoring elements of An over its generators. Finding alternate factorization
allows us to route around blocks. The idea of factoring over generators is
what lead to the approach found in [5]

3. The Algorithm

To find a path in AGn from α to β we saw that it is equivalent to factoring
the element β over the generators (12k) and (1k2) for k = 3, 4, 5, ..., n. For
the sake of simplicity let us restrict our discussion to the graph AG5. The
description we give can be generalized to AGn.

We denote a = (123), a2 = (132), b = (124), b2 = (142), c = (125) and
c2 = (152). Note that if α ∈ Hi for some i ∈ {1, 2, 3, 4, 5} then αa, αa2, αb
and αb2 are all in Hi. But αc and αc2 are elements of Hk where k 6= i.

Let α be any permutation from A5. The first two positions are called
the Vestibule and the last three positions are called the Locked positions.
Say we wish to route from α to β in AG5. We need to apply a sequence
of 3-rotations to transform α to β. As soon as the elements that need to
be in the lock position are locked, the two positions in the vestibule are
automatically satisfied, since α is an even permutation.

Suppose we wish for α = 14235 to be routed to β = 34125. We call β
the target permutation. Let L be the number of elements locked. In the
target permutation 1 needs to be in the third place, 2 in the fourth place,
and 5 in the fifth place. In α, 5 is in the correct position. Hence, L = 1. We
let V be the number of elements in the vestibule waiting to be locked. The
elements 1 and 2 need to be locked. In α the element 1 in the vestibule and
2 is out of the vestibule but not in the correct position. So V = 1. Suppose
that we are routing from s1 to t1. We define the stepcount parameter s for
some vertex v to be the number of steps that it takes to route from s1 to
v. Obviously, the vertex s1 has stepcount value s = 0. We also compute
the stepcount for when routing from s2 to t2 and from s3 to t3.

5



When we apply the operators a, a2, b, b2, c and c2 we move elements
in and out of the vestibule. For each move we make we compute and store
the parameters V and L and s.

At the outset we start with the pairs (s1, t1), (s2, t2) and (s3, t3). We
first route s1 to t1 then s2 to t2 and finally s3 to t3. When routing from
s1 to t1 we note the blocks s2, t2, s3 and t3. When routing from s2 to t2
we note the path from s1 to t1 that was computed and the vertices s3 and
t3. When routing from s3 to t3 the elements of the paths from s1 to t1 and
from s2 to t2 are our blocks. All these blocks are stored.

For each move we make we desire to increase L. However, this is not
always possible due to blocks. If we are forced to backtrack in our search
the we look for the next best L and then the next best V .

Formally, we define the following parameters for the algorithm.

Definition 3.1. Let v be a vertex and i ∈ {1, 2, 3} is fixed. The parameter
Stepcount s computes the number of edges in a route from si to the vertex
v.

Definition 3.2. A BLOCK is a vertex that has been used in a previously
computed route or is one of the vertices {s1, t1, s2, t2, s3, t3}
Definition 3.3. A vertex is classified as an OVERSTEP if there exists
a shorter path from the source to that vertex.

Definition 3.4. A vertex is said to be ACTIVE if it is potentially a vertex
that can be used as part of some route.

The algorithm may be described,formally, with the following steps.

ALGEBRAIC ALGORITHM

(1) i = 0
(2) Input (s1, t1), (s2, t2), (s3, t3).
(3) i = i + 1. Stop when i = 4
(4) Initialize routing for (si, ti) for current value of i
(5) Apply the operators a, a2, b, b2, c and c2. Compute L, V , s.
(6) Characterize each result as either as a BLOCK, OVERSTEP or as

ACTIVE.
(7) Choose best ACTIVE point. If none exist goto step 9
(8) If done goto step 3 and store computed route. Else goto 5.
(9) Backtrack to the last step with remaining ACTIVE point available

and goto step 5.

In [4, 7] the following theorem was proved.

Theorem 3.1. Let AGn be the alternating group graph and let n ≥ 5.
Then AGn has the (n− 2)-Disjoint Path Property.

6



Our algorithm is a semi-brute force algorithm. It searches for paths in
an organized manner so that not ever possible path must be computed.
Given (s1, t1), (s2, t2), (s3, t3) our algorithm is guaranteed to find the three
disjoint paths because Theorem 3.1 guarantees that these three disjoint
paths exist.

4. A Worked out Example

We present in this section a worked out example illustrating the algo-
rithm as outlined in the previous section. In our example let s1 = 14235,
t1 = 34125,s2 = 21435, t2 = 23145, s3 = 42135 and t3 = 12345. We first
route from s1 to t1, and then from s2 to t2 and then from s3 to t3. As
we try to route we keep track of blocks and the parameters V,L, s. For s1

we have V = 1,L = 1 and s = 0. From each ACTIVE node we apply the
generators a, a2, b, b2 and c2. When we do this at s1 we get the following:

(1) 21435 BLOCKED.
(2) 42135 BLOCKED
(3) 31245 L = 1, V = 1, s = 1, ACTIVE
(4) 43215 L = 1, V = 0, s = 1, ACTIVE
(5) 51234 L = 0, V = 2, s = 1, ACTIVE
(6) 45231 L = 0, V = 2, s = 1, ACTIVE

Note that when we applied the operator b to s1 we got the vertex 31245.
This node has L = 1 and V = 1. Looking at the above table this vertex
has the best values of L and V . So we continue our route from 31245 we
get. We apply the operators again and we get

(1) 23145 BLOCKED.
(2) 12345 BLOCKED.
(3) 43215 OVERSTEP
(4) 14235 OVERSTEP
(5) 53241 L = 0, V = 1, s = 2 ACTIVE
(6) 15243 L = 0, V = 2, s = 2 ACTIVE

At this point we route from 15243 since it has a higher V value than
53241. We do this and we obtain:

(1) 21543 L = 0,V = 2,s = 3 ACTIVE
(2) 52143 L = 1,V = 2,s = 3, ACTIVE
(3) 41253 L = 0,V = 1,s = 3, ACTIVE
(4) 54213 L = 0,V = 1,s = 3, ACTIVE
(5) 31245 OVERSTEP
(6) 53241 OVERTSTEP

The vertex with the highest L value is 52143. Hence, we continue our
route from there. We do this and we get:

(1) 15243 OVERSTEP
(2) 21543 OVERSTEP

7



(3) 45123 L = 2,V = 1,s = 4 ACTIVE
(4) 24153 L = 1, V = 1, s = 4 ACTIVE
(5) 35142 L = 1, V = 1, s = 4 ACTIVE
(6) 23145 L = 2, V = 1, s = 4, ACTIVE

Note, that at this point both vertices 45123 and 23145 have the value
L = 2. This means that both these vertices are one step away from t1.
Choose one, say 45123 and by applying the operator c we complete the
route. Our route from s1 to t1 is,therefore, s1 ⇒ 31245 ⇒ 15243 ⇒ 52143 ⇒
45123 ⇒ t1. This route is now stored and its vertices are now considered
potential blocks when routing the other pairs of vertices.

For route 2 we have s2 = 21435 and t2 = 23145. For s2 we have that
L = 1,V = 1 and s = 0. Routing from s2 gives us:

(1) 42135 BLOCKED
(2) 14235 BLOCKED
(3) 32415 L = 1, V = 0, s = 1 ACTIVE
(4) 13425 L = 1, V = 1, s = 1 ACTIVE
(5) 52431 L = 0, V = 1, s = 1 ACTIVE
(6) 15432 L = 0, V = 2, s = 1 ACTIVE

The vertex with the best value is 13425. Routing from there we get:

(1) 41325 L = 1, V = 2, s = 2 ACTIVE
(2) 34125 BLOCK.
(3) 21435 OVERSTEP
(4) 32415 OVERSTEP
(5) 51423 L = 0, V = 2, s = 2 ACTIVE
(6) 35421 L = 0, V = 1, s = 2 ACTIVE

The node 41325 has the best L value. We continue our search from there.
We get:

(1) 34125 BLOCK
(2) 13425 OVERSTEP
(3) 24315 L = 1, V = 1, s = 3 ACTIVE
(4) 12345 BLOCK
(5) 54321 L = 0, V = 2, s = 3 ACTIVE
(6) 15324 L = 0, V = 2, s = 3 ACTIVE

The node 24315 has the best L value. So routing from there gives us:

(1) 32415 OVERSTEP
(2) 43215 L = 1, V = 1, s = 4 ACTIVE
(3) 12345 BLOCK
(4) 41325 OVERSTEP
(5) 52314 L = 0, V = 1, s = 4 ACTIVE
(6) 45312 L = 0, V = 2, s = 4 ACTIVE

The node 43215 has the best L value. Routing from there we obtain:
8



(1) 24315 OVERSTEP
(2) 32415 OVERSTEP
(3) 14235 BLOCK
(4) 31245 BLOCK
(5) 54213 L = 0, V = 2, s = 5
(6) 35214 L = 0, V = 1, s = 5

Note that 54213 and 35214 tie with L = 0. But 54213 has a better V
value. Hence, we route from there. Doing this we obtain:

(1) 25413 L = 0, V = 1, s = 6 ACTIVE
(2) 42513 L = 0, V = 1, s = 6 ACTIVE
(3) 15243 BLOCK
(4) 41253 L = 0, V = 2, s = 6 ACTIVE
(5) 35214 OVERSTEP
(6) 43215 OVERSTEP

The nodes 25413, 42513 and 41253 have the same L values. But 41253
has the best V value. So we continue our route from there:

(1) 24153 L = 1, V = 1, s = 7 ACTIVE
(2) 12453 L = 0, V = 1, s = 7 ACTIVE
(3) 54213 OVERSTEP
(4) 15243 BLOCK
(5) 34251 L = 0, V = 1, s = 7 ACTIVE
(6) 13254 L = 0, V = 1, s = 7 ACTIVE

The node 24153 has the highest L value. Hence, we route from there.
This gives us:

(1) 12453 L = 0, V = 1, s = 8 ACTIVE
(2) 41253 OVERSTEP
(3) 52143 BLOCK
(4) 45123 BLOCK
(5) 32154 L = 1, V = 0, s = 8 ACTIVE
(6) 43152 L = 1, V = 1, s = 8 ACTIVE

The nodes 32154 and 43152 have the same L value. But 43152 has the
better V value. Thus, we continue our route from there. Doing this we get:

(1) 14352 L = 0, V = 2, s = 9 ACTIVE
(2) 31452 L = 0, V = 1, s = 9 ACTIVE
(3) 54132 L = 1, V = 2, s = 9 ACTIVE
(4) 35142 L = 2, V = 1, s = 9 ACTIVE
(5) 24153 OVERSTEP
(6) 32154 OVERSTEP

Note the node 35142 has L = 2. We are, thus, one step away from
the target. We complete the route to t2 by applying the operator c. Our

9



route for s2 to t2 is therefore: s2 ⇒ 13425 ⇒ 41325 ⇒ 24315 ⇒ 43215 ⇒
54213 ⇒ 41253 ⇒ 24153 ⇒ 43153 ⇒ t2.

Again this route along with the route from s1 to t1 are stored as potential
blocks when we route from s3 to t3. We have that s3 = 42135 and t3 =
12345. Hence, for s3 we have that L = 1, V = 1 and s = 0. We start our
route from s3. Doing this we get

(1) 14235 BLOCK
(2) 21435 BLOCK
(3) 34125 BLOCK
(4) 23145 BLOCK
(5) 54132 L = 0, V = 2, s = 1 ACTIVE
(6) 25134 L = 0, V = 1, s = 1 ACTIVE

The nodes 54132 and 25134 have the same L values. But 54132 has the
better V value. So we route from there. Doing this we obtain:

(1) 15432 L = 0, V = 1, s = 2 ACTIVE
(2) 41532 L = 0, V = 1, s = 2 ACTIVE
(3) 35142 BLOCK
(4) 43152 BLOCK
(5) 25134 OVERSTEP
(6) 42135 OVERSTEP

Here we have that 15432 and 41532 are tied in terms of their L and V
values. So, at this point we choose the first node, 15432. Routing from
there we get:

(1) 41532 OVERSTEP
(2) 54132 OVERSTEP
(3) 31452 L = 0, V = 1, s = 3 ACTIVE
(4) 53412 L = 0, V = 2, s = 3 ACTIVE
(5) 21435 BLOCK
(6) 52431 L = 0, V = 1, s = 3 ACTIVE

The nodes 31452, 53412 and 52431 all have the same L values. But.
53412 has the best V value. So we route from that vertex. Doing this we
get:

(1) 45312 L = 1, V = 2, s = 4 ACTIVE
(2) 34512 L = 0, V = 2, s = 4 ACTIVE
(3) 15432 OVERSTEP
(4) 31452 OVERSTEP
(5) 25413 L = 0, V = 1, s = 4 ACTIVE
(6) 32415 L = 1, V = 1, s = 4 ACTIVE

The nodes 45312 and 32415 have the same L value. But, 45312 has the
better V value. So, we route from there. We get:

(1) 34512 OVERSTEP
10



(2) 53412 OVERSTEP
(3) 14352 L = 1, V = 1, s = 5 ACTIVE
(4) 51342 L = 2, V = 1, s = 5 ACTIVE
(5) 24315 BLOCK
(6) 52314 L = 1, V = 1, s = 5 ACTIVE

At this point we have the vertex 51342 with L = 2. Hence, we are now
one step away from t3. Applying the operator c2 completes the route. Our
route from s3 to t3 is therefore s3 ⇒ 54132 ⇒ 15432 ⇒ 53412 ⇒ 45312 ⇒
51342 ⇒ t3. We, thus have our three disjoint paths.

5. Conclusions

The purpose of this paper was to give an algebraic algorithm that con-
structs the (n− 2)- Disjoint Paths for AGn. We claim our approach works
for other Cayley graphs. This remains to be shown.

References

[1] S. B. Akers, D. Harel, and B. Kirshnamurthy. The star graph: An attractive al-
ternative to the n-cube. Proceedings of the International Conference on Parallel
Processing, pages 393–400, 1987.

[2] S. B. Akers and B. Kirshnamurthy. A group theoretic model for symmetric intercon-
nection networks. IEEE Transactions on Computers, 38(4):555–566, 1989.

[3] E. Cheng and M. Lipman. Disjoint paths in split-stars. Congressus Numerantium,
137:47–63, 1999.

[4] E.Cheng, L.D.Kikas, and S.Kruk. A disjoint path problem in the alternating group
graph. Congressus Numerantium, 175:117–159, 2005.

[5] J.Boats, L.D.Kikas, and J.Oleksik. Algorithm for finding disjoint paths in the alter-
nating group graph. Congressus Numerantium, 181:97–109, 2006.

[6] J. S. Jwo, S. Lakshimivarahan, and S. K. Dhall. A new class of interconnection
network based on the alternating group. Networks, 23:315–325, 1993.

[7] Lazaros D. Kikas. Interconnection Networks and the k-Disjoint Path Problem. PhD
thesis, Oakland University, 2004.

[8] M. E. Watkins. On the existence of certain disjoint arcs in graphs. Duke Mathematics
Journal, 35:231–246, 1968.

Jeffe Boats, Department of Mathematics and Computer Science, University
of Detroit Mercy, Detroit, MI, 48221, USA

E-mail address: boatsjj@udmercy.edu

Lazaros Kikas, Corresponding Author, Department of Mathematics and Com-
puter Science, University of Detroit Mercy, Detroit, MI, 48221, USA

E-mail address: kikasld@udmercy.edu

John Oleksik, Department of Mathematics and Computer Science, Univer-
sity of Detroit Mercy, Detroit, MI, 48221, USA

E-mail address: oleksijj@udmercy.edu

11


