For simple connected graphs that are neither paths nor cycles, we define $l(G) = \max\{m : G \text{ has a divalent path of length } m \text{ that is not both of length } 2 \text{ and in a } K_3\}$, where a divalent path in G is a path in G whose interval vertices have degree two in G. A graph is pancyclic if G has cycles of length k, for each k with $3 \leq k \leq |V(G)|$. Let $s \geq 0$ be an integer and a graph is called s-pancyclic if the removal of any k vertices results in a pancyclic graph. When $s = 0$, a 0-pancyclic graph is a pancyclic graph. We show that if a connected graph G is not a path, a cycle or a $K_{1,3}$, then for any integer $s \geq 0$, $L(G)^{s+1}$ is s-pancyclic.