
AN ALGORITHM FOR FINDING DISJOINT PATHS IN
THE ALTERNATING GROUP GRAPH

JEFFE BOATS, LAZAROS KIKAS, JOHN OLEKSIK

Abstract. For the purpose of large scale computing, we are inter-
ested in linking computers into large interconnection networks. In
order for these networks to be useful, the underlying graph must
possess desirable properties such as a large number of vertices, high
connectivity and small diameter. In this paper, we are interested in
the alternating group graph, as an interconnection network, and the
k-Disjoint Path Problem. In 2005, Cheng, Kikas and Kruk showed
that the alternating group graph, AGn has the (n− 2)-Disjoint Path
Property. However, their proof was an existence proof only. They
did not show how to actually construct the (n − 2) disjoint paths.
In this paper we develop an algebraic algorithm that constructs the
(n−2) disjoint paths from scratch. We close with remarks on possible
research directions stemming from this work.

Keywords: Interconnection networks, graphs, vertex disjoint paths

1. Introduction

For the purposes of large scale computing we are interested in connecting
together a large number of processors/computers. In order for these net-
works to be useful the underlying graph structure should have properties
such as vertex symmetry, high connectivity, low diameter and have a large
number of vertices. Please see [1, 2].

Recall that connectivity refers to the number of vertices one can delete
from a graph without disconnecting it. Deletion of a vertex can be con-
sidered as processor failure in a computer network. We want our network
to be able to handle a large number of processor failure and still have a
function network. That is, we want our graph to remain connected. Thus,
we want our graph to have high connectivity.

Since these networks will be used for very large computations involving
large data sets, it is desirable for our graph structure to have a large number
of vertices. We also want, relative to the number of vertices, for the graph to
have low diameter. This reduces communication delay within the network.

The study of interconnection networks and their underlying graph topolo-
gies has been the subject of much research. For a very long time the n-cube
was the network topology of choice. In 1988, the star graph was introduced

1

1342 2143

3412 4213

2431 4321

1234 3124

2314

3241

4132 1423

Figure 1. AG4

as a competitive alternative to the n-cube [1, 2]. In the 1990’s the split
star and its companion graph was introduced as interconnection network
topologies [3, 5].

In this paper we study the alternating group graph AGn. Let An

be the alternating group the group of even permutations on the symbols
1, 2, 3, ..., n. The vertex set of AGn is the set An. Two vertices of AGn

are adjacent if and only if one can get from one vertex to the other via a
3-rotation. A 3-rotation is accomplished by rotating elements in the first,
second, and kth position where k ∈ {3, 4, 5, ..., n}. There are two types
of 3-rotations: a left rotation and right rotation. As an example consider
the permutation (12345) ∈ AG5. Then both the permutations (51342) and
(25431) are adjacent to (12345). Figure 1 displays the alternating group
graph AG4.

A summary of some of the basic properties of AGn can be found in [5].
A few worth noting are that the alternating group graph AGn is a regular
graph with degree 2(n − 2) and it has n!(n−2)

2 edges. It is also vertex
symmetric and also has a hierarchal structure. Consider the subgraph of

2

AGn induced by the vertices where 1 is fixed in the nth position. It is clear
our subgraph will be isomorphic to AGn−1. Since, we can do this for all
n symbols it is clear that AGn is made up of n copies of AGn−1. These
properties make the alternating group graph AGn a novel topology in the
design of parallel networks.

Suppose that we have four computers in an interconnection network and
denote them by A,B, C and D. Suppose we want computer A to com-
municate with B and C with D simultaneously. Communication between
two processors is accomplished by sending the message across a path in the
network. Suppose the path of communication between A and B share a
computer with the path between C and D,then during the simultaneous
communication a resource has to be shared. This sharing we call a signal
collision and can cause communication delay.

If many signal collisions occur the performance of the network is affected.
Hence, signal collision is a major factor in the performance of parallel net-
works. The question is given an interconnection network, how many simul-
taneous signals can be routed through a particular network topology while
avoiding signal collisions?

In graph theoretic terms we want to study the following problem: Given
k pairs of distinct nodes (s1, t1), (s2, t2), ..., (sk, tk) does there exist k-disjoint
paths, one connection each pair? This problem is called the k-Disjoint Path
Problem and has generated much research. If for a graph G we can do this
for any selection of k pairs of distinct nodes then G is said to have the
k-Disjoint Path Property.

Much has been studied about this problem. It has been shown for k ≥ 3
the problem of finding k-disjoint paths is NP -hard. Watkins in [7] showed
that if a graph G has the k-Disjoint Path Property then it must be (2k−1)
connected. Past work done by Cheng and Lipman shows that the split star
graph, S2

n has the (n−1)-Disjoint Path Property [3]. In 2005, Cheng, Kikas,
and Kruk showed that the alternating group graph AGn has the (n − 2)-
Disjoint Path Property [4, 6]. Both these proofs for the split star and the
alternating group are existence proofs; they do not provide an algorithm
for the construction of these paths. In this paper, we provide geomet-
ric arguments which take advantage of the hierarchal structure of AG5 to
demonstrate the construction of the 3-disjoint paths with the elements of
AG5.

2. Preliminary Results needed for the Algorithm

Let Hi be the substar of AG5 induced by the elements of A5 with i fixed
in the 5th place. If we consider the elements of A5 then the elements of H5

forms a subgroup of A5 with cosets formed by H1,H2,H3 and H4. Let Hj
i

be the substar of AG5 induced by the elements of of A5 with i fixed in the
jth position. These substars are said to have a j-orientation.

3

Let (s1, t1), (s2, t2), (s3, t3) be our pairs of 3 distinct nodes in AG5. Let
S = {s1, s2, s3} and T = {t1, t2, t3}. In the paper [4] we have
ψi = |V (Hi)∩ (S∪T)|. Consider the tuple (ψ1, ψ2, ψ3, ψ4, ψ5). We see that
we get 10 cases.

• (6, 0, 0, 0, 0)
• (5, 1, 0, 0, 0)
• (4, 2, 0, 0, 0)
• (4, 1, 1, 0, 0)
• (3, 3, 0, 0, 0)
• (3, 2, 1, 0, 0)
• (3, 1, 1, 1, 0)
• (2, 2, 2, 0, 0)
• (2, 2, 1, 1, 0)
• (2, 1, 1, 1, 1)

These ten cases are the ψ-counts. Define ψj
i = |V (Hj

i) ∩ (S ∪ T)|. We
then say a ψ-count is N-psi if it contains N nonzero values of ψ.

It is clear that the ψ count for most configurations of the si’s and ti’s will
often be different in the different orientation and so we choose whichever
available orientation gives us the easiest case. Our algorithm can be written
for the j = 5 orientation and then, for example, should j = 3 be the
preferred orientation the program would simply permute the third and fifth
places in all the vertices, run the program and switch the indices back.

We now ask the following question. By considering the three different
orientations in AG5 is it possible to eliminate the need to consider certain
ψ counts? A simple inspection makes it clear that (6, 0, 0, 0, 0) in any
orientation must be at least 3-psi in some other orientation [4]. Hence we
can avoid 1-psi case.

Proposition 2.1. If the elements of S ∪ T are 2-psi in every orientation,
then they are (3, 3, 0, 0, 0) in at least one orientation.

Proof. Suppose the elements of S ∪ T are 2-psi in every orientation. Then
elements of S ∪ T can have but two possibilities for the third position, say
α and β two possibilities for the fourth position, say γ and δ, and two
possibilities for the fifth position say ε and ζ. This gives us eight possible
vertex forms.

• (∗, ∗, α, γ, ε)
• (∗, ∗, α, γ, ζ)
• (∗, ∗, α, δ, ε)
• (∗, ∗, α, δ, ζ)
• (∗, ∗, β, γ, ζ)
• (∗, ∗, β, γ, ε)
• (∗, ∗, β, δ, ε)
• (∗, ∗, β, δ, ζ)

4

For each of these eight forms,there are two possible choices for the first
two positions and only one of them will be even. Now α 6= β, γ 6= δ and
ε 6= ζ. Since each element of {α, β, γ, δ, ε, ζ} is an element of {1, 2, 3, 4, 5}
then by the pigeonhole principle two of the elements must be the same,thus
eliminating two of the forms. Without loss of generality, let us assume
that α = γ, eliminating the first two forms. The remaining six forms are
(4, 2, 0, 0, 0) in two orientations and (3, 3, 0, 0, 0) in the other. ¤

The cases (6, 0, 0, 0, 0),(5, 1, 0, 0, 0), and (4, 2, 0, 0, 0) can be avoided by
changing orientations. Therefore, and algorithm to construct the 3-disjoint
paths need only consider seven cases. We order the cases by use of the
following function. We define θ(ψ) as follows: θ(ψ) =

∑5
1=1(ψi)2 + N

where N is the number of nonzero ψ’s. This function has the property that
the ψ-counts have decreasing values of θ in the order listed above. Thus,
our algorithm can thus avoid the (6, 0, 0, 0, 0),(5, 1, 0, 0, 0), and (4, 2, 0, 0, 0)
cases by computing the orientation with minimum θ value.

Now with the number of cases reduced from ten cases to seven, it must be
mentioned that all remaining cases have subcases. Each different subcase
requires us to develop a separate routing strategy.

In this paper the routing algorithms will be named PATH ∗ ∗ ∗ ∗ ∗ @
where the ∗ ∗ ∗ ∗ ∗ denote one of the remaining seven cases and @ gives the
number of pairs of (si, ti)’s share a common substar.

The PATH ∗ ∗ ∗ ∗ ∗ @ algorithms depend on other routing algorithms
which perform simple yet crucial tasks. We will need to be able to connect
two vertices within the same substar using the CONNECT2 algorithm
and at times this algorithm will need to avoid as many as three blocks (i.e
previously used vertices). We will also need to route vertices to other sub-
stars in an efficient manner by means of what we call ”gating” algorithms.
Both of these tasks will make use of the algebra of the alternating group.

3. Algebra of the Alternating Group

The algebra of Hi is defined by the generators of a = (123) and b = (124).
Notice that a3 = b3 = e where e = (1). Also aba = b2 and bab = a2. From
this we get the group elements {e, a, b, a2, b2, ab, ba, a2b, b2a, ab2, b2a, ab2a}.
Note a, b, a2 and b2 are vertices adjacent to e as they represent the 3-cycles
(123), (124), (132) and (142) respectively.

Any vertex in Hi can be selected as the ”origin”, O. Every other vertex
in the substar corresponds to one of the other twelve group elements, de-
pending on which permutations are necessary to reach it from the origin.
This leads us to the following key observation. The problem of unblocked
routing in a network configured in AG5 can be shown to be equivalent to
factoring group elements of A5 over a set of generators.

5

From any vertex, one can move in a 4-cycle by moving a then b then
a then b. This is true since baba = (bab)a = a2a = a3 = e. Similarly,
abab = e. Also note that using a3 and b3 we move in a 3-cycle.

To create the CONNECT2 algorithm we make use of the algebraic
simplification rules mentioned above. Suppose we need to route v1 to v2.
Let v1 = O the origin. Our CONNECT2 algorithm must be able to avoid
as many as three blocks.

Suppose v2 is adjacent to v1. Then creating the path from v1 to v2 is
trivial since it cannot be blocked. We have v2 = gv1 where g is a generator
or the square of a generator.

Suppose v2 is one of the other seven vertices in Hi. A path can still
be found avoiding any three ”blocks” because there can always be found
four disjoint paths from v1 to v2. The following list of equations has each
beginning with one of the seven remaining vertices; each is followed by three
equivalent algebraic expressions representing mutually disjoint movements
from v1 to that vertex.

• ab = b2a2 = ba2b2a = a2bab2;
• ba = a2b2 = ab2a2b = b2aba2;
• ab2 = a2ba = b2a2b = ba2ba2;
• ba2 = a2b2a = b2ab = ab2ab2;
• a2b = ab2a2 = bab2 = b2ab2a;
• b2a = aba2 = ba2b2 = a2ba2b;
• ab2a = ba2b = a2ba2 = b2ab2.

Thus, CONNECT2 can be constructed to connect any two vertices in the
same substar, circumventing as many as three blocks and doing so with a
path of at most four edges.

Definition 3.1. A triad is a connected subgraph of Hi consisting of three
vertices and two edges, with the condition that travel from one end to the
other requires both an a and a b movement.

So from the origin O, a triad takes either the form O ⇒ aO ⇒ baO
or O ⇒ bO ⇒ abO. We make the following important observation. The
twelve vertices of Hi can be easily generated by constructing four disjoint
triads. This can be done by initiating them at the vertices of any 4-cycles.

Definition 3.2. Atriad partition is a partition of Hi into four disjoint
triads.

We do this in the following way. From the origin, O, we move in a
4-cycle. For example we have O ⇒ bO ⇒ abO ⇒ babO ⇒ ababO = O.
From each vertex in the 4-cycle, construct an ab or ba triad, whichever is
disjoint from the 4-cycle. We get the following triads, O ⇒ aO ⇒ baO,
bO ⇒ b2O ⇒ ab2O, abO ⇒ a2bO ⇒ ab2aO, and a2O ⇒ ba2O ⇒ b2aO.

6

This partitions Hi into the sets {O, a, ba},{b, b2, ab2},{ab, a2b, ab2a}, and
{a2, ba2, b2a}.

There are six distinct triad partitions of Hi formed in the above manner,
since there are six distinct 4-cycles. After selecting an origin O, we can
categorize them by where O appears in the triad and by whether the initial
vertices move in an abab or baba 4-cycle beginning with the triad containing
O.

The other five partitions are enumerated as follows.

• {e, b, ab}, {a, a2, ba2}, {ba, b2a, ab2a}, {b2, ab2, a2b}
• {a2, e, b}, {ba2, ab, a2b}, {b2a, ab2a, ab2}, {a, ba, b2}
• {b2, e, a}, {ab2, ba, b2a}, {a2b, ab2a, ba2}, {b, ab, a2}
• {ba, b2, e}, {b2a, a, a2}, {ab2a, ba2, ab}, {ab2, a2b, b}
• {ab, a2, e}, {a2b, b, b2}, {ab2a, ab2, ba}, {ba2, b2a, a}

The next observation is each of the twenty four triads in the above six
partition is different from the rest. There are twelve vertices in Hi, and
from each can be initiated from an ab triad or a ba triad, thus there are
twenty-four different triads in Hi. The pigeonhole principle assures us that
every possible triad has been listed exactly once.

Proposition 3.1. In Hi, any pair of vertices share either 0 or 2 common
triads.

Proof. Let v1 and v2 be two distinct vertices of Hi. Suppose a triad exist
containing both of them. Then v1 and v2 are either b adjacent or separated
by two edges.

If v1 and v2 are adjacent, then it is possible to move one to the other
by using a or b. Suppose, without loss of generality, that v2 = av1. Then
two triads can be constructed. One triad is X ⇒ v1 ⇒ v2, where v1 = bX
and v2 = av1 = abX. And the other is v1 ⇒ v2 ⇒ X where v2 = av1 and
X = bv2 = bav1.

If v1 and v2 are separated by two edges, then there is no guarantee a
triad exists containing them both. Suppose, without loss of generality, that
there exists a triad of the form v1 ⇒ X ⇒ v2. Suppose that v2 = abv1.
Then abv2 = ababv1 = v1, and so there exists an ab triad v2 ⇒ Y ⇒ v1.
Similarly, if v2 = bav1, then we have bav2 = babav1 = a2av1 = a3v1 = v1,
and so there exists an ab triad of the form v2 ⇒ Y ⇒ v1. Thus, v1 and v2

share either 0 or 2 common triads.
¤

Proposition 3.2. Given any three vertices of Hi, three disjoint triads can
be found, each containing one of the veritices.

Proof. Let v1, v2, and v3 be vertices of Hi. By Proposition 3.1 there are
at most two triads containing v1 and v2. So there are at most two triad

7

+

v

+

+

+

+

+

+

+

+

+

H

H

H

H

a

b

c
d

Figure 2. Structure of vertex v = abcde

partitions which join v1 and v2 in a common triad. A similar result is true
for the pair v2 and v3 and also for v1 and v3.

Let v1 = O. Suppose none of the six triad partitions can isolate v1, v2,
and v3 in separate triads. It can only be that v2 and O share a triad in two
of the partitions, v3 and O share a triad in two separate partitions, and
v2 and v3 share a triad in the remaining two. On inspection of the triad
partitions, we find only cases where this could happen.

The first case is v1 = O, v2 = aO, v3 = a2O. From v1, v2 and v3, we can
initiate three new triads: {O, b, ab}, {a, ba, b2} and {a,ba2, b2a}. We thus
have three disjoint triads, each containing one of the vertices v1, v2, and v3.

The second case is v1 = O, v2 = bO, v3 = b2O. Similarly, we initiate
the triads {O, a, ba}, {b, ab, a2}, and {b2, ab2, a2b}. Thus, we can always
construct three disjoint triads which isolates v1, v2, and v3.

¤

Proposition 3.3. In a substar Hi each triad contains at least one vertex
connected to any other given substar.

8

Proof. Consider a triad of Hi and let k 6= i be given. We will show that
some vertex in the triad connects to Hk. Let v be the middle vertex of the
triad. Then v must take one of the three forms: (k, ∗, ∗, ∗, i), (∗, k, ∗, ∗, i),
(∗, ∗, k, ∗, i), or (∗, ∗, ∗, k, i).

If v = (k, ∗, ∗, ∗, i) then it is adjacent to the vertex (∗, i, ∗, ∗, k) in Hk. If
v is of the form (∗, k, ∗, ∗, i), then v connects to a vertex in Hk of the form
(i, ∗, ∗, ∗, k).

If v = (∗, ∗, k, ∗, i), then av = (k, ∗, ∗, ∗, i), while av = (∗, k, ∗, ∗, i). Thus,
if v is an ab-triad the terminal vertex of the triad is av and connects toHk.
If it is a ba-triad then the initial vertex is a2v and connects to Hk.

If v = (∗, ∗, ∗, k, i), then bv has the form (k, ∗, ∗, ∗, i) while b2v = (∗, k, ∗, ∗, i).
Thus if v is an ab-triad, the initial vertex of the triad is b2v and connects
to Hk. If it is a ba-triad, then the terminal vertex is bv and connects to
Hk. Hence, any triad in Hi contains a vertex connecting to any other
substar. ¤

Note that the Proposition 3.3 is also easily proved using the structure
result found in [4] and Figure 2.

We use these propositions now to prove our Gateway Theorem.

Theorem 3.1 (Gateway Theorem). For any three vertices in a substar
Hi and any three substars to which these vertices are assigned, one can
construct disjoint paths routing each vertex to its assigned substar.

Proof. Let vx, vy and vz be vertices Hi and assigned to substars Hx, Hy

and Hz respectively. By Proposition 3.2, three disjoint triads Tx, Ty, and
Tz can be generated so that vx ∈ Tx, vy ∈ Ty and vz ∈ Tz. Then, by
Proposition 3.3, at least one vertex in Tx is connected to Hx. Similarly, at
least one vertex in Ty is connected to Hy, and at least one vertex in Tz is
connected to Hz. It follows that within each triad is a path routing each
vertex to its assigned substar,and since the triads are disjoint, the paths
must be disjoint. ¤

This enables us to compose the GATE3 algorithm, designed to route any
three vertices to any three substars of our choice. This is useful for cases
where our ψ-counts have ψi = 3 for some i. Similar algorithms GATE1
and GATE2 handle cases where only one or two such routes need to be
found. Anytime such a gate is opened for some si the path uses at most
three vertices, a complete triad, before leaving its substar for the new one.
This is important because a gating vertex will therefore not block enough
vertices in its originating substar to prevent two other vertices from being
connected by the CONNECT2 algorithm.

The connection algorithm will thus avoid blockage in nearly all the
ψ-counts merely by performing all necessary gating before making intra-
substar connections. The only difficulty arises in those rare instances where

9

(4, 1, 1, 0, 0) is the optimal ψ-count and PATH41100−1 or PATH41100−2
must be used.

For those cases, we now invent the algorithm QUICKGATE which is
used only on a substar containing four vertices from S ∪ T . Such a substar
must contain at least one mated pair. QUICKGATE selects the other
two vertices and immediately sends each of them to an adjacent vertex in
another substar. Because this form of gating does not use triads, the two
departing vertices only leave two blocks in their originating substar so that
CONNECT2 will have no problem joining the mated pair left behind.

The catch is that, in this form of gating, each departure vertex connects
directly to only two of the other four substars. For each of the two departing
vertices, QUICKGATE must choose which of the two adjacent substars
to use. It does so in the following way. If possible, the vertex is sent to
the substar of its mate. If not, then it chooses a substar devoid of the
elements of S ∪ T . If this is also not possible, then the algorithm just
chooses randomly. The (4, 1, 1, 0, 0) algorithms are more complicated due
to the possible outcomes of using QUICKGATE, but each outcome is
easily resolved.

4. The Algorithm

In this section we give our algorithm and its routing schemes for the
various cases. The main algorithm is as follows.

Algorithm 1 (Main Algorithm). • Input si and ti for i = 1, 2, 3.
• Compute θ(ψ) for j = 3, 4, 5 and choose optimal orientation.
• Count the number of mated si, ti’s sharing a substar.
• If we are in the (2, 2, 2, 0, 0) case and number of mated (si, ti)’s is

3 then call CONNECT2 three times find routes, report the paths
and terminate.

• If not then call the appropriate PATH ∗ ∗ ∗ ∗ ∗@ and return result
• Use CONNECT2 three times
• Report the paths

Now we describe the routing algorithms coded as subroutines. In the
following routing algorithms the term n-star will refer to a substar which,
in the chosen orientation and before the algorithm runs, contains n elements
of S ∪ T . A vertex is said to be paired if its mate is in the same substar.
Also note for unblocked routing one may use an algorithm described in [5]
for simple routing in AGn.

Algorithm 2 (PATH21111− 0). • Use GATE2 to send vertices from
the 2-star to their mates.

• Use GATE1 to send the remaining unpaired vertex to its mate.
• return

10

Algorithm 3 (PATH21111− 1). • Use GATE1 twice, to send un-
paired vertices to their mates

• return

Algorithm 4 (PATH22110− 0). • Use GATE2 on one of the 2-
stars to send vertices to their mates.

• Use GATE1 on the vertex in the other 2-star to send it to its mate.
• return

Algorithm 5 (PATH22110− 1). • Use GATE2 on the unpaired 2-
star to send its vertices to their mates.

• return

Algorithm 6 (@PATH22110-2). • Use GATE1 to send the unpaired
vertex to its mate.

• Return

Algorithm 7 (PATH22200− 0). • Use GATE2 on a 2-star to send
its vertices to separate 0-stars.

• Use GATE2 on another 2-star to send its vertices to their mates.
• Use GATE1 on the third 2-star to send the remaining unpaired

vertex to its mate
• return

Algorithm 8 (PATH22200− 1). • Select a vertex in each of the
unpaired 2-stars so that they are not mated.

• Use GATE1 on the selected vertices to send them to their mates.
• return

Algorithm 9 (PATH31110− 0). • Use GATE3 on the 3-star to
send its vertices to their mates.

• return

Algorithm 10 (PATH31110− 1). • Use GATE1 on the unpaired
vertex in the 3-star to send it to its mate.

• Use GATE1 on a vertex in one of the remaining unpaired 1-stars.
• return

Algorithm 11 (PATH32100− 0). • Use GATE1 on the 2-star to
send one vertex to a 0-star.

• Use GATE3 on the 3-star to send its vertices to their mates
• return

Algorithm 12 (PATH32100− 1). • Use GATE1 on the unpaired
vertex in the 3-star to send to the 2-star.

• Use GATE1 on the remaining unpaired vertex in the 2-star to send
it to its mate.

• return
11

Algorithm 13 (PATH32100− 2). • Use GATE1 on the unpaired
vertex in the 3-star to send it to its mate.

• return

Algorithm 14 (PATH33000− 0). • Use GATE3 on a 3-star to send
its vertices to separate 0-stars.

• Use GATE3 on the other 3-star to send its vertices to their mates.
• return

Algorithm 15 (PATH33000− 2). • Use GATE1 on the unpaired
vertex in one of the 3-stars to send it to a 0-star.

• Use GATE1 on the unpaired vertex in the other 3-star to send it
to its mate.

• return

Algorithm 16 (PATH41100− 1). • Use QUICKGATE to evict
the unpaired vertices from the 4-star.

• If both evictees go to their mates then return.
• If only one evictee goes to its mate, then the other went to a 0-star.

Use GATE1 on the other evictee to send to its mate and return.
• If neither evictees goes to its mate then both went to 0-stars. If

they went to the same 0-star then use GATE2 to send them to
their mates and return. If the evictees went to separate 0-stars
then use GATE1 twice to send evictees to their mates and return.

Algorithm 17 (PATH41100− 2). • Use QUICKGATE to evict
one of the mated pairs from the 4-star.

• If the evictees go to the same substar then use GATE1 to send one
of the vertices in a 1-star to its mate and return.

• If the evictees go to separate substars then use GATE1 to send
one of the evictees to its mate and use GATE1 to send one of the
vertices in a 1-star to its mate and return.

5. Conclusions

The purpose of this paper was to give an algorithmic proof that AG5

has the 3-Disjoint Path Property. Future research includes extending our
algorithm for AGn and other interconnection networks.

References

[1] S. B. Akers, D. Harel, and B. Kirshnamurthy. The star graph: An attractive al-
ternative to the n-cube. Proceedings of the International Conference on Parallel
Processing, pages 393–400, 1987.

[2] S. B. Akers and B. Kirshnamurthy. A group theoretic model for symmetric intercon-
nection networks. IEEE Transactions on Computers, 38(4):555–566, 1989.

[3] E. Cheng and M. Lipman. Disjoint paths in split-stars. Congressus Numerantium,
137:47–63, 1999.

12

[4] E.Cheng, L.D.Kikas, and S.Kruk. A disjoint path problem in the alternating group
graph. Congressus Numerantium, 175:117–159, 2005.

[5] J. S. Jwo, S. Lakshimivarahan, and S. K. Dhall. A new class of interconnection
network based on the alternating group. Networks, 23:315–325, 1993.

[6] Lazaros D. Kikas. Interconnection Networks and the k-Disjoint Path Problem. PhD
thesis, Oakland University, 2004.

[7] M. E. Watkins. On the existence of certain disjoint arcs in graphs. Duke Mathematics
Journal, 35:231–246, 1968.

Jeffe Boats, Department of Mathematics and Computer Science, University
of Detroit Mercy, Detroit, MI, 48221, USA

E-mail address: boatsjj@udmercy.edu

Lazaros Kikas, Corresponding Author, Department of Mathematics and Com-
puter Science, University of Detroit Mercy, Detroit, MI, 48221, USA

E-mail address: kikasld@udmercy.edu

John Oleksik, Department of Mathematics and Computer Science, Univer-
sity of Detroit Mercy, Detroit, MI, 48221, USA

E-mail address: oleksijj@udmercy.edu

13

